
Export To SQL Known Limitations
Guide

September 28, 2023
Copyright © 2023

Table of Contents
Introduction ... 3
Export to MySQL ... 4
Export to Oracle .. 5
Export to PostgreSQL ... 6
Export to MS SQL .. 7
General Differences between MySQL, Oracle, PostgreSQL and MS SQL Dialects 8

Insert Statements ... 8
Drop Table Statements ... 8
Create Table Statement .. 8

Defining an Auto-Incrementing Field .. 8
Defining a Primary Key .. 9
Comments on Fields ... 9
Index Fields .. 10
Unique Fields .. 10
Character Escaping .. 10
Fields ... 11

Future Improvements .. 12

Proprietary & Confidential 2

Introduction

This document describes all of the known limitations, and the specifications for exporting-to-sql.

Proprietary & Confidential 3

Export to MySQL

The following limitations exist for exporting data to MySQL:

• MySQL clients limit the table row size to a maximum of 65,535 bytes, excluding TEXT and BLOB
fields. When we encounters a table where the sum of field sizes could exceed 65,535 bytes, it
converts all the VARCHAR type custom Salesforce fields that aren’t defined as keys or unique to
TEXT type.

• MySQL does not support the Boolean data type (True / False). We will define the field as a
TINYINT(1) data type, and then insert the integer value of 0 for Salesforce’s boolean value of ‘false’,
and insert the integer value of 1 for Salesforce’s boolean value of ‘true’.

• Row size limitations: In some cases where an object schema contains a large number of fields (the
number of fields depends on their type, so there's no easy way to tell this ahead of time), an error
relating to maximum row sizes may occur. This appears to be a known issue with MySQL.
• It appears that for MySQL 5.7.16 (specifically), the following parameter settings can resolve the

problem:
• innodb_strict_mode = OFF
• innodb_log_file_size = 536870912
• innodb_default_row_format = dynamic
• innodb_file_format = Barracuda

• Alternatively, changing the DB Engine to MyISAM should remove this limitation. Note that AWS
RDS does not allow changing the engine to MyISAM.
• nnodb_page_size = 64k (AWS_RDS does not support changing this)
• innodb_log_buffer_size = 32M
• innodb_buffer_pool_size = 512M

Proprietary & Confidential 4

Export to Oracle

The following limitations exist:

• Max field value length. When issuing multiple insert statements, Oracle prevents us from inserting
values larger than 4000 bytes. Currently, such field values are trimmed to 4000 bytes. A comment is
added to the SQL with the original field value.

• The max field length of field names in Oracle is 30 characters. In order to accommodate field
names that are longer than 30 characters, the names are trimmed, and then concatenated with a
running index number - from 1 to 999 - to the field name, in order to distinguish one trimmed field
from another field. A comment indicating the original name (the Salesforce original field name) is
added to the field. This lets the user map the original names to the trimmed ones.For example:
OptionsSendClientCredentialsInHeader changes to OptionsSendClientCredential001.

• Duplicate index names. An index name that was used once can’t be used again in Oracle. Similar
to the above case of fields names, we concatenate a running index number - from 1 to 999 - to the
name (after trimming the index name if it exceeds 30 characters). For example: Name changes to
Name001.

• Boolean data type is not supported in Oracle. We will define the field as NUMBER(1) data type, and
insert a value of 0 for Salesforce’s boolean value ‘false’, and insert a value of 1 for Salesforce’s
boolean value ‘true’.

• Oracle does not support a ‘time-of-day’ field type (such as: HH24:MI:SS). We will instead store the
time in a VARCHAR2(8) field type. When saved in the format of HH24:MI:SS, the value consists of
8 characters, for example: 03:25:11. We convert Salesforce’s time values to strings, and then store
them in the field we’ve defined.

Proprietary & Confidential 5

Export to PostgreSQL

The following limitations exist:

• In PostgreSQL, an index name that was used once, cannot be used again as both an index name
and a table name. In order to overcome this limitation, we concatenate a running index number -
from 1 to 999 - to the name. For example: Name changes to Name001, after the index number
concatenation.

Proprietary & Confidential 6

Export to MS SQL

The following limitations exist:

• MS SQL does not allow multiple NULL values, in columns that were defined as ‘Unique’. Whereas all
the other SQL implementations that we support, do allow multiple NULL values. Therefore, we use a
technique in which a unique, non-clustered index, is declared for the field post creation, in order to
allow similar behaviour that's allowed on the other database types (other than MS SQL).

• MS SQL has a limit of 1000 lines per multiple insert statement. To work around this limit, we will split
the records between several insert statements.

• In MS SQL, an index name that was used once, cannot be used again, neither as an index name nor
as a table name. In order to overcome this limitation, we concatenate to the name, a running index
number - from 001 to 999. For example: A field called Name is changed to Name001, after the index
number concatenation.

• MS SQL does not support the Boolean data type (True / False). We will define the field as a TINYINT
data type, and insert the integer value of 0 for Salesforce’s boolean value of ‘false’, and insert the
integer value of 1 for Salesforce’s boolean value of ‘true’.

Proprietary & Confidential 7

General Differences between MySQL, Oracle,
PostgreSQL and MS SQL Dialects

Insert Statements
Insert statements in MySQL, PostgreSQL and MS SQL

INSERT INTO tableName (col1,col2,col3) VALUES (‘val1’,’val2’,’val3’),(‘val4’,’val5’,’val6’) … ;

Insert statements in Oracle

INSERT ALL

INTO tableName(col1,col2,col3) VALUES (‘val1’,’val2’,’val3’)

INTO tableName(col1,col2,col3) VALUES (‘val4’,’val5’,’val6’)

SELECT 1 FROM DUAL;

Drop Table Statements
Drop table statement in MySQL and PostgreSQL

DROP TABLE IF EXISTS tableName;

Drop table statement in Oracle

BEGIN

EXECUTE IMMEDIATE 'DROP TABLE tableName' ;

EXCEPTION WHEN OTHERS THEN

IF SQLCODE != -942 THEN

RAISE;

END IF ;

END ;

Drop table statement in MS SQL

IF OBJECT_ID(tableName, ‘U’) IS NOT NULL

DROP TABLE tableName;

Create Table Statement

Defining an Auto-Incrementing Field
Define an auto-incrementing field in MySQL

In the field definition itself, one can concatenate the auto-increment expression: AUTO_INCREMENT

Proprietary & Confidential 8

For example: ID int NOT NULL AUTO_INCREMENT

Define an auto-incrementing field in Oracle

In the field definition itself, one can concatenate the auto-increment expression: GENERATED ALWAYS
AS IDENTITY

For example: "Revision" NUMBER NOT NULL GENERATED ALWAYS AS IDENTITY

Define an auto-incrementing field in PostgreSQL

In the field definition itself, instead of the column type, one can concatenate the auto-increment
expression: SERIAL

For example: “ID” SERIAL NOT NULL

Define an auto-incrementing field in MS SQL

In the field definition itself, one can concatenate the auto-increment expression: IDENTITY(1,1)

For example: “ID” INT NOT NULL IDENTITY(1,1)

Defining a Primary Key
Defining a Primary Key in MySQL

After the field was defined in the creation statement one can define the field as a primary key in the
following way:

PRIMARY KEY ("ID")

Defining a Primary Key in Oracle and in MS SQL

In the field definition itself, one can concatenate the primary key definition expression: PRIMARY KEY

For example: “ID” NUMBER PRIMARY KEY

Defining a Primary Key in PostgreSQL

After the field was defined in the creation statement one can define the field as a primary key in the
following way:

PRIMARY KEY (“ID”)

Comments on Fields
Comments on Fields in MySQL

In the field definition itself, one can concatenate the comment part, as: COMMENT ‘comment string’

For example: id int(10) NOT NULL auto_increment COMMENT ‘unique ID for each foo entry’,

Comments on Fields in Oracle and in PostgreSQL

After the field was defined in the creation statement one can add a comment to the field in the following
way:

COMMENT ON COLUMN “TableName”.”ColumnName” IS “Actual comment”;

Comments on Fields in MS SQL

After the field was defined in the creation statement one can add a comment to the field using a stored
procedure in the following way:

Proprietary & Confidential 9

EXEC sys.sp_addextendedproperty

@name = N'field_label',

@value = N'Actual comment',

@level0type = N'Schema',

@level0name = N'dbo',

@level2type = N'Column',

@level2name = N'ColumnName';

Index Fields
Index Fields in MySQL

After the field was defined in the creation statement one can add an index on the field in the following
way:

KEY `Index_name` (`field_name`)

Index Fields in Oracle and in PostgreSQL

After the field was defined in the creation statement one can add an index on the field in the following
way:

CREATE INDEX “index_name” ON “table_name”.”field_name”

Index Fields in MS SQL

After the field was defined in the creation statement one can add an index on the field in the following
way:

CREATE INDEX “index_name” ON “table_name”(”field_name”)

Unique Fields
Unique Fields in MySQL, Oracle, and PostgreSQL

In the field definition itself, one can concatenate the ‘Unique’ definition expression: UNIQUE

For example: “ID” INT NOT NULL UNIQUE

Unique Fields in MS SQL

After the field has been defined in the creation statement, you can add a unique field constraint in the
form of a "unique non-clustered" index, in the following way:

CREATE UNIQUE NONCLUSTERED INDEX “index_name” ON “table_name”(”field_name”)WHERE
“field_name” IS NOT NULL

Character Escaping
Character Escaping in MySQL and MS SQL

The following characters are escaped in the export using the ‘\’ character:

‘\’, “ ‘ “, ‘ “ ‘, ‘\r’, ‘\n’, ‘\t’.

Character Escaping in Oracle

Proprietary & Confidential 10

In order to successfully escape characters in the Oracle export, an escape character definition is
created before the table creation: SET ESCAPE ‘\\’

The following characters are escaped in the export using the ‘\’ character:

‘\’, “ ‘ “, ‘ “ ‘, ‘&;’, ‘_’, ‘%’.

Character Escaping in PostgreSQL

In order to successfully escape characters in the PostgreSQL export, an escape character notation is
prepended to every string type field value, in the following way:

E ’Inserted value that can now have escaped value such as \r‘

The following characters are escaped in the export using the ‘\’ character:

‘\’, “ ‘ “, ‘ “ ‘, ‘\r’, ‘\n’, ‘\t’.

Fields

Table 1. Fields
SalesForce MySQL Oracle PostgreSQL MS SQL

boolean TINYINT(1) NUMBER(1) BOOLEAN TINYINT

double DOUBLE FLOAT(24) DOUBLE PRECISION FLOAT(24)

dateTime DATETIME DATESTAMP DATESTAMP DATETIME

time TIME VARCHAR2(8) TIME TIME

date DATE DATE DATE DATE

address VARCHAR(255) VARCHAR(255) VARCHAR(255) VARCHAR(255)

ID VARCHAR(#) VARCHAR2(#) VARCHAR(#) VARCHAR(#)

int INT(#) NUMBER INTEGER INT

string VARCHAR(#) VARCHAR2(#) VARCHAR(#) VARCHAR(#)

picklist VARCHAR(256) VARCHAR(256) VARCHAR(256) VARCHAR(256)

anyType VARCHAR(#) VARCHAR2(#) VARCHAR(#) VARCHAR(#)

(Large string) TEXT CLOB VARCHAR VARCHAR(MAX)

(Max size string) MEDIUMTEXT CLOB TEXT VARCHAR(MAX)

Proprietary & Confidential 11

Future Improvements

Oracle

Support for fields that are longer than 4k bytes. One possible workaround for a user is to use a single
insert statement with the help of variables:

DECLARE

v_long_text CLOB;

BEGIN

v_long_text := 'your long string of text' ;

INSERT INTO table VALUES (1 , v_long_text);

END ;

http://stackoverflow.com/questions/8801814/how-to-insert-update-larger-size-of-data-in-the-oracle-
tables

Proprietary & Confidential 12

http://stackoverflow.com/questions/8801814/how-to-insert-update-larger-size-of-data-in-the-oracle-tables
http://stackoverflow.com/questions/8801814/how-to-insert-update-larger-size-of-data-in-the-oracle-tables

	Export to SQL Known Limitations Guide
	Table of Contents
	Introduction
	Export to MySQL
	Export to Oracle
	Export to PostgreSQL
	Export to MS SQL
	General Differences between MySQL, Oracle, PostgreSQL and MS SQL Dialects
	Insert Statements
	Drop Table Statements
	Create Table Statement
	Defining an Auto-Incrementing Field
	Defining a Primary Key
	Comments on Fields
	Index Fields
	Unique Fields
	Character Escaping
	Fields

	Future Improvements

